skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "King, Aaron A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mathematical models in ecology and epidemiology must be consistent with observed data in order to generate reliable knowledge and evidence-based policy. Metapopulation systems, which consist of a network of connected sub-populations, pose technical challenges in statistical inference owing to nonlinear, stochastic interactions. Numerical difficulties encountered in conducting inference can obstruct the core scientific questions concerning the link between the mathematical models and the data. Recently, an algorithm has been proposed that enables computationally tractable likelihood-based inference for high-dimensional partially observed stochastic dynamic models of metapopulation systems. We use this algorithm to build a statistically principled data analysis workflow for metapopulation systems. Via a case study of COVID-19, we show how this workflow addresses the limitations of previous approaches. The COVID-19 pandemic provides a situation where mathematical models and their policy implications are widely visible, and we revisit an influential metapopulation model used to inform basic epidemiological understanding early in the pandemic. Our methods support self-critical data analysis, enabling us to identify and address model weaknesses, leading to a new model with substantially improved statistical fit and parameter identifiability. Our results suggest that the lockdown initiated on 23 January 2020 in China was more effective than previously thought. 
    more » « less
  2. Abstract The spread of dengue and other arboviruses constitutes an expanding global health threat. The extensive heterogeneity in population distribution and potential complexity of movement in megacities of low and middle-income countries challenges predictive modeling, even as its importance to disease spread is clearer than ever. Using surveillance data at fine resolution following the emergence of the DENV4 dengue serotype in Rio de Janeiro, we document a pattern in the size of successive epidemics that is invariant to the scale of spatial aggregation. This pattern emerges from the combined effect of herd immunity and seasonal transmission, and is strongly driven by variation in population density at sub-kilometer scales. It is apparent only when the landscape is stratified by population density and not by spatial proximity as has been common practice. Models that exploit this emergent simplicity should afford improved predictions of the local size of successive epidemic waves. 
    more » « less